to the so-called high-temperature θ^{S} values found in the literature. The θ_{298}^{S} values obtained from the literature are identified by citations in the reference column for θ_{298}^{S} . Since the values of θ_{298}^S are usually large when θ_0^S values are large, and small when θ_0^S values are small, no plot of θ_{298}^S versus the group (similar to Fig. 21) is included here. The values of θ_{298}^S vary from a minimum of 43°K for cesium to a maximum of 1874°K for diamond. A plot of θ_{298}^{S} for the rare earths (triangular points) is shown in Fig. 22b. It is seen that there is a small but smooth increase in θ_{298}^{S} with increasing atomic number, which is approximately parallel to the Lindermann value, θ^{N} . This smooth increase contrasts with the scattered data shown in Fig. 22a for θ_{0}^{S} . Graphite. Examination of θ_0^S and θ_{298}^S for graphite shows a very large difference ($\theta_0^S = 402^\circ \text{K}$ and $\theta_{298}^S = 1550^\circ \text{K}$). DeSorbo¹⁰² has plotted θ^S versus temperature, which shows that θ^S increases very rapidly with temperature from $\theta_{10}^S = 500^\circ \text{K}$ at 10°K to $\theta_{75}^S = 900^\circ \text{K}$ at about 75°K. The values given in Table XV and the curve given by DeSorbo are in reasonable agreement. Estimated Data. The estimated values of $\theta_{298}^{\rm s}$ for white and red phosphorus, scandium, technetium, protactinium, and neptunium are based on the estimated $C_v^{\rm l}$ values listed in Table XIV. For those elements for which no values are listed (monoclinic sulfur, selenium, tellurium, promethium, europium, ytterbium, polonium, francium, radium, and actinium), reasonable estimates for $\theta_{298}^{\rm s}$ may be obtained from the Lindemann equation, which is also listed in Table XV. ## 17. LINDEMANN EQUATION AND THE DEBYE TEMPERATURE In 1910 Lindemann¹⁰³ showed that the Debye temperature θ^M is related to the melting point T_m , atomic mass M, and atomic volume V, of a substance, according to the following expression: $$\theta^{M} = K(T_{m}/M)^{\frac{1}{2}}(1/V)^{\frac{1}{2}}.$$ (17.1) In Eq. (17.1) K is a constant approximately equal to 130. This expression is commonly called the Lindemann equation or the Lindemann law. Several values for K have appeared in the literature; Blackman⁸³ gives 115, Zemansky¹⁰⁴ gives 137, and Kaufman¹⁰⁵ gives 135.2. The value for K is determined by substituting experimental values of θ in Eq. (17.1) for as many substances as possible. The value of K depends on the number of Debye temperatures available, since T_m , M, and V are known for almost all the elements, and the value depends also on which Debye temperature one chooses, i.e., θ_0^S , θ_{298}^S , or some other θ . Because this information was not given for the above literature values, K was evaluated from both θ_0^S and θ_{298}^S . Substituting θ_0^S into Eq. (17.1), K was found to be 145.1 ± 31.6 for 59 elements. The θ_0^S values for graphite, gallium, germanium, ruthenium, cadmium, osmium, and iridium were not used to evaluate K. Substituting θ_{298}^S into Eq. (17.1), K was found to be 138.5 ± 25.6 for 64 elements. The θ_{298}^S values for white and red phosphorus, rhombic sulfur, gallium, germanium, and cadmium were not used to evaluate K. The standard deviations indicate that there is really not much difference between the two values of K obtained here. It is also seen that the range of the standard deviation for either K value includes the three literature values cited. The K value of 138.5 was used to calculate the θ^M values listed in Table XV, primarily because its standard deviation was less than that of the K value of 145.1. The K value of 145.1 was, however, used to estimate the $\theta_{\theta}{}^{S}$ values for those elements for which no experimental data existed. Because of the relationship between θ_0^S and θ^M , and since θ_0^S is shown in Fig. 21, no plot of θ^M is shown for the elements of the fourth, fifth, and sixth periods of the Periodic Table. A plot, however, of θ^M versus the atomic number for the rare-earth elements is shown in Fig. 22b. The θ^M value increases smoothly with increasing atomic number, and with a slope similar to θ_{298}^S . The low values for europium and ytterbium follow directly from the low melting points and the large atomic volumes of these two elements as compared with those of the other rare earths. Again this is a manifestation of the divalent character of these two elements. Estimated Data. The values for promethium and francium are shown as estimated data since their melting points and atomic volumes were both estimated. The values for radium and protactinium are shown as estimated data because the atomic volume of radium and the melting point of protactinium were estimated. ## 18. Debye Temperature from Elastic Constants Debye temperatures can be calculated from the single-crystal elastic constants c_{ij} and from the polycrystalline elastic constants c_t and c_t . The details for determining Debye temperatures are given in the reviews of Blackman,⁹² de Launay,⁹⁴ Herbstein,⁹⁶ and Mitra,⁹⁷ and are not discussed here. The Debye temperatures determined from elastic constants at 0° K, θ_{0}^{B} , and at 298° K, θ_{298}^{E} , are listed in Table XVI. For convenience in making ¹⁰² W. DeSorbo, Acta Met. 2, 274 (1954). ¹⁰³ F. A. Lindemann, *Physik. Z.* 11, 609 (1910). 104 M. W. Zemansky, "Heat and Thermodynamics," 4th ed., p. 270. McGraw-Hill, New ¹⁰¹ L. Kaufman, Trans. AIME 224, 1006 (1962).